TFAWS Passive Thermal Paper Session

Thermal and Fluid Analysis and Design of the NanoRacks Airlock ® Module

> D. Shindich, R.S. Miskovish, H. Matt ATA Engineering, Inc. B. Howe, M. Rowley NanoRacks LLC

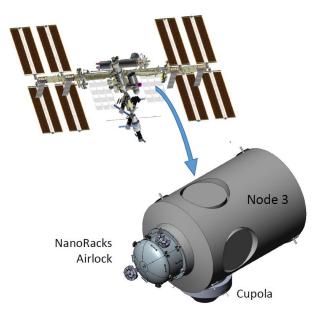
> > Presented By

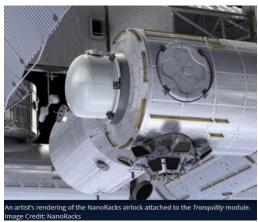
Dmitriy Shindich

ANALYSIS WORKSHOP

&

Thermal & Fluids Analysis Workshop **TFAWS 2017** August 21-25, 2017 NASA Marshall Space Flight Center Huntsville, AL




Introduction

Airlock provides a bigger doorway to space on the ISS

- Increase payload deployment volume by 5x over JAXA Kibo module
- Deploy cubesats, smallsats, and scientific instruments
- Permanent commercial module on ISS
- . May be relocated to commercial space station after ISS retirement
- Scheduled for launch in 2019 on SpaceX Falcon 9/Dragon

Airlock on Port Side of Node 3

Airlock Requirements

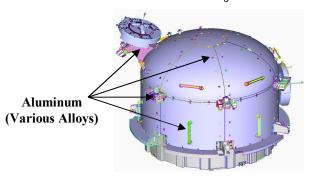
NanoRacks and ATA worked with NASA, ISS, Boeing to define and maintain all IRB thermal requirements and temperature limits for various launch and on-orbit phases

" IRB defines:

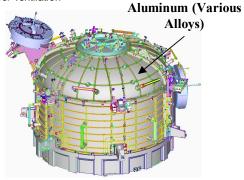
- . Analysis parameters and load cases to consider
- . Temperature limits (e.g. to preclude condensation)
- Heat transfer limits to ISS
- . Human safety factors (e.g. touch temperature limits)
- . IMV airflow parameters and air velocity limits

Temperature Limits Per Mission Phase

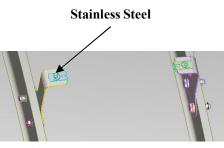
- " Dragon Free-Flight
 - . Material and Non-Op limits
- " Dragon Trunk on Node 2 and Transfer to Node 3
 - . External Touch Temperature limits
- On SSRMS at Node 3 Pre-Berthed
 - . PCBM and ACBM mating limits
- Node 3 Berthed and Unpressurized
 - . Condensation and Touch Temperature limits
- Berthed and Pressurized on Node 3
 - . On-Orbit Survival during Planned 6-hour Power Outage
- " SSRMS Payload Deployment Operations
 - Touch Temperature limits



Airlock Design

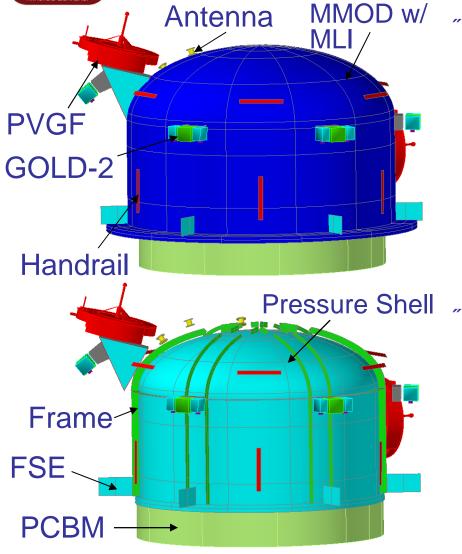


" Bell jar design


- . Primary structure
 - Passive common berthing mechanism (PCBM). standard, flight-proven hardware
 - " Pressure shell . provides habitable environment
 - Launch vehicle flight support equipment (FSE). designed and built by SpaceX
 - Power and video grapple fixture (PVGF). interface to ISS Space Station Remote Manipulator System (SSRMS)
- Secondary structure
 - Internal outfitting (e.g. seat tracks, avionics support structure)
 - " Micrometeoroid orbital debris (MMOD) shielding
 - " IVA/EVA handrails and mounts
 - Payload support structure and GOLD-2 Connectors
- " Thermal control system (TCS)
 - . Passive thermal mechanisms
 - Multilayer insulation (MLI) beneath MMOD
 - " Coatings
 - . Active thermal mechanisms
 - " Shell heaters
 - Air ventilation while berthed to Node 3 via Intermodular ventilation (IMV)
 - Discharge and return diffusers for ventilation

Airlock CAD

Airlock CAD (MMOD Not Visible)



Clips and Bolts used between MMOD and Pressure Shell

Airlock Thermal Model

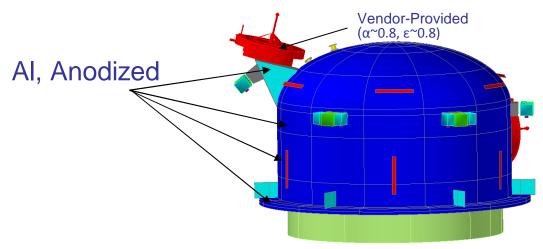
Airlock Thermal Desktop Simplified Model

Simplified thermal model

- . 500 nodes
- . 300+ cases assessed
 - " Different phases
 - "YPR attitudes and articulating joints
 - " Beta angles: 75_to -75_
 - Design iterations
- Integration with vendor-provided models

Modeling assumptions

- . Hot = 450 BTU/hr ft² solar, 81 BTU/hr ft² earth IR, 0.4 albedo, EOL surface properties
- Cold = 419 BTU/hr ft² solar, 65
 BTU/hr ft² earth IR, 0.2 albedo, BOL surface properties

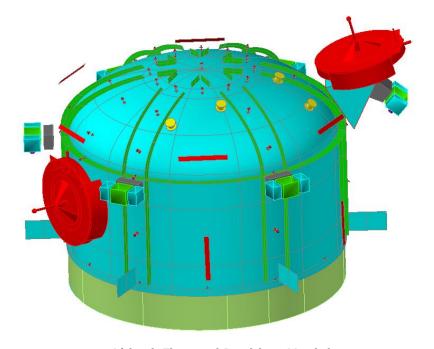


Airlock Thermal Material Properties

Material Name	Density, kg/m³	Specific Heat, J/kg/K	Conductivity, W/m/K
AL (Varied)	2770.	921.6	121-173
Stainless Steel	8030.	504.	16.3

Material Name	Absorptivity	Emissivity
AL, Anodized (Varying)	0.350 - 0.760	0.820 - 0.880
Betacloth	0.400	0.600
Nickel Plated	0.440	0.120
Stainless Steel	0.470	0.140

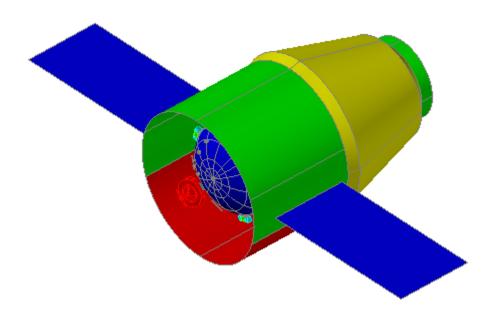
Airlock Thermal Desktop Simplified Model

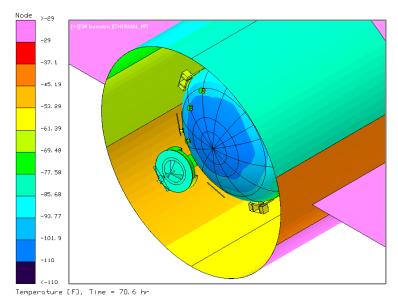


Airlock Thermal Analysis Approach

" Heaters

- . Thermostatically controlled shell heaters with fault tolerance
- . 80% heater duty cycle
- . Heaters placed in regions of maximum heat leakage currently
 - Most leakage occurs near PCBM and PVGF
 - Need to be refined via detailed model
- . 800 W of total heater power
 - Sized to survive and maintain components during worst case cold environments and non-op 6hour cooldown

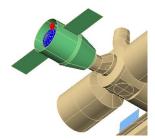

Airlock Thermal Desktop Model with MMOD Shield removed and Heater circuits visible

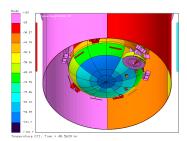

Airlock Design for Dragon Free-Flight

- Vendor-provided components like Antenna and PVGF have slight exceedances on the cold side
 - . Mitigate through component TVAC testing

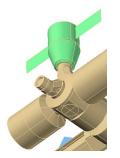
Dragon Free-Flight Thermal Desktop Model

Dragon Free-Flight Temperature Contour Showing Antenna Exceedance on Cold Side

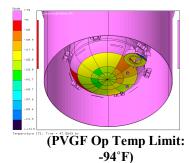

Airlock Design for Node 2 Berthing



- Variable Dragon on Node 2 berthing schemes considered
 - . Node 2 Nadir
 - No exceedances
 - " Best option

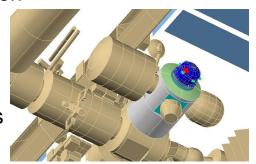


- Some exceedances for antenna
- Bounded by dragon free-flight



- . Node 2 Zenith
 - Numerous exceedances

Dragon Berthed on Node 2 Temperature Contours

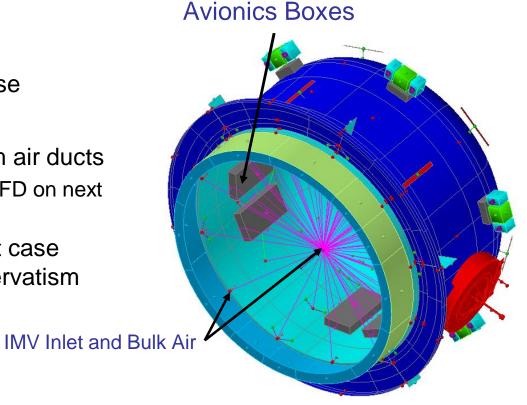


Airlock Design – Airlock on Node 3

When berthed on Node 3, Airlock acts like a radiator

- . Radiator Area >100 ft²
- . Minimize heater power required to meet condensation temperature requirements for internal components
 - Also minimize heater power for 6 hour cooldown requirement
- Potential design solutions
 - " Lower MMOD / ratio
 - Black anodized aluminum/betacloth for MMOD stovepipe
 - " Reduce MLI * from 0.03
 - Increase thermal isolation between MMOD and Pressure shell since most heat loss is conductive. this is the most robust solution
 - Add thermal isolation to PVGF interface
- . Heater requirements
 - " 80% duty cycle
 - Place heaters in regions with greatest conductive loss

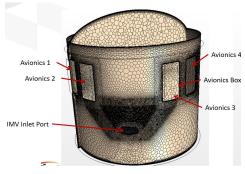
Airlock Berthed on Node 3 Thermal Desktop Model



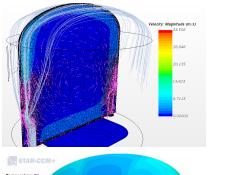
Airlock Design - Airlock on Node 3

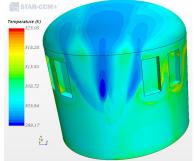
Other power sources

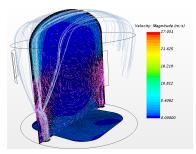
- . Avionics
 - " 200 W dissipation
 - Still in development
 - Only used for hot case
- . IMV
 - " 100 W heat flow from air ducts
 - . Calculated from CFD on next slide
 - Not used for cold/hot case predictions for conservatism

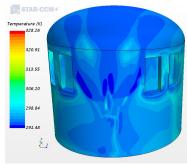


Airlock Thermal Desktop Model with MMOD Shield, Avionics, and IMV Visible




Airlock Design – IMV CFD on Node 3





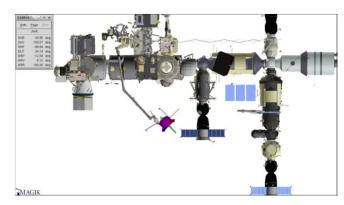
Mesh with Prism Layer

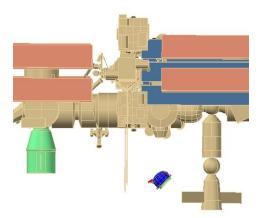
Velocity and Temperature Gradients with Hatch Closed (Left) and Open (Right)

CFD performed on Node 3 with 4 avionics boxes and detailed IMV ducts

 Estimated bulk heat transfer coefficients for use in Thermal Desktop

$$\overline{h_c} = \frac{q}{\left| \overline{T_{surf}} - \overline{T_{exit}} \right|}$$


- Demonstrated volume of stagnant air < 5% per NASA requirements
- STAR-CCM+ solver with SST turbulence model and average Y+ = 2.25
- . Boundary Conditions
 - " IMV Inlet with varying CFM (Closed or Open Hatch), Boundary Temperature, P = 1 atm
 - Pressure outlet with BoundaryTemperature, P = 1 atm; Hatch open or closed
 - Constant heat flux on wall boundaries (except IMV duct walls)


Airlock Design - SSRMS Deployment

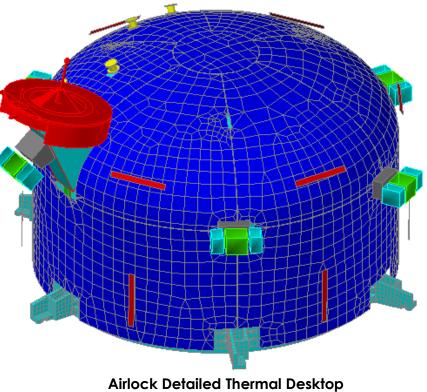
- There are minimal temperature exceedances during payload deployment
 - . During certain off-nominal attitudes, sun has direct view to internal components
 - Will be mitigated to limit operations during extreme orbital conditions
 - . Antenna and handrail have slight exceedances on cold side during some nominal +XVV orbits
 - Mitigate through testing

SSRMS Payload Deployment CAD

SSRMS Payload Deployment Thermal Desktop Model (SSRMS not used in analysis)

Airlock Thermal Testing Approach

Antenna Unit-Level Thermal Testing


- PQ thermal testing at ambient and vacuum pressure with 16 and 4 cycles respectively to demonstrate integrity
- . 5_C (9_F) margin and 11_C (20_F) uncertainty
- . Critical component that far exceeds current design limits
- . Designed with guidance from MIL-STD-1540E

Future Design Work

- Detailed heater layouts
 - . 6-hour cooldown requirement
 - . Double fault tolerance
- SpaceX detailed dragon model integration
- Development of detailed model
 - . 10k nodes
 - . Analyzed for worst case attitudes and beta angles
- Complete suite of analyses to demonstrate compliance with ISS IRB

Airlock Detailed Thermal Desktop Model (Under Development)

Acknowledgements

The authors would like to thank NanoRacks, ATA, and NASA for their support in this project and publication